Maternal and Paternal Preconception Endocrine Disrupting Chemicals Exposure and Birth Outcomes

Carmen Messerlian, PhD Assistant Professor of Environmental Reproductive Epidemiology Yu Zhang, PhD Student

Works to understand how the

Environment impacts reproductive health from the very earliest stages of life – from the formation of gametes and embryos – to the birth of infants and throughout child health and development.

Our mission is to

Use cutting-edge evidence to inform clinical practice, translate science into policy action, and implement prevention strategies to improve the health of mothers, fathers, and their children.

SEED

Scientific Early Life Environmental Health & Development Program

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

01 BACKGROUND

Pregnancy and Birth Couple-based outcome

Birth Outcomes Prenatal period Preconception period

Preconception Period

Oogenesis Spermatogenesis Uterine receptivity Overall health

EDCs

Exogenous chemicals that interfere with any aspect of endocrine system or hormonal action

PHTHALATES

High Molecular Weight Medical devices, toys

Low Molecular Weight Paints, adhesives Personal care products

BPA Plastic bottles Food packaging Toys

MIXTURES

Beyond a singlechemical problem, real word exposure scenarios are much more complex

ENDOCRINE

Alters any aspect of endocrine function

EPIGENETIC

Alters epigenetic regulation

Genomic imprinting required for embryofetal development

CHEMICALS & MIXTURES

IMMUNE

Impacts inflammation and immune function

METABOLIC

Impacts metabolic processes and regulation

Determine the extent to which maternal and paternal preconception urinary concentrations of phenol and phthalate mixtures were associated with birth outcomes

02

STUDY DESIGN

PROSPECTIVE PRECONCEPTION COHORT EARTH STUDY

03 METHODS

EXPOSURES

Urinary Concentrations 11 phthalate metabolites BPA Parabens Mixtures

OUTCOMES

Medical Records Birthweight (g) Gestational age accuracy Preterm Birth (<37 weeks)

ANALYSISSINGLE CHEMICAL AND MIXTURE

MIXTURE OF CHEMICALS

Individual preconception windows Couples' joint window

PRINCIPAL COMPONENT ANALYSIS PCA

BAYESIAN KERNAL MACHINE REGRESSION BKMR

PCA

- Reduces individual biomarker concentrations into uncorrelated groups (factors) based on the correlation structure
- Useful for the real-life exposure patterns and potential shared sources
- Regression models were fit to examine the association between the PCA-derived groups and birth outcomes

SKMR

- Univariate associations, interactions, and cumulative effect of the mixture
- Hierarchical variable selection in BKMR compares the relative importance of groups (e.g., maternal group vs paternal)
- PCA-derived factors informed groups within in maternal and paternal BKMR models
- Permits examination of relative impact of maternal vs paternal mixture groups on outcomes

COVARIATES

Selected a priori w casual diagram Maternal covariates added to paternal models

MATERNAL AND PATERNAL

Age, BMI, education, smoking, race, fertility treatment

COUPLE MODEL

Adjusted for all maternal and paternal covariates

05 RESULTS PRETERM BIRTH AND BIRTHWEIGH

N=384 83% Nulliparous ~ 35 years of age N=211 27% Male Factor ~ 36 years of age N=203 White Educated Non-Smokers

COUPLES

PRETERM BIRTH

RESULTS

RESULTS - PRETERM BIRTH

PCA MODELS

Table 1. Risk Ratio of Preterm Birth for every unit increase in PCA Factor Score

PCA-derived factors	Adjusted RR (95%Cl) Preterm Birth		
	Maternal	Paternal	
DEHP-BPA factor	1.36 (1.00, 1.84)	1.47 (0.90, 2.42)	
Paraben factor	0.93 (0.65, 1.32)	1.43 (0.86, 2.38)	
High molecular weight phthalate factor	0.88 (0.61, 1.26)	0.67 (0.38, 1.17)	
Low molecular weight phthalate factor	0.96 (0.65, 1.41)	0.89 (0.51, 1.52)	

This BKMR derived figure depicts the association between a given exposure concentration and preterm birth, holding all other individual biomarkers at their median concentration

UNIVARIATE ASSOCIATIONS

MATERNAL EXPOSURE – PRETERM BIRTH

UNIVARIATE ASSOCIATIONS

PATERNAL EXPOSURE – PRETERM BIRTH

This BKMR derived figure depicts the association between a given exposure concentration and preterm birth, holding all other individual biomarkers at their median concentration

Maternal mixtures Couples' mixtures 0.4 0.2 0.0 Preterm Birth Estimate Paternal mixtures 0.0--0.2 _{0.5} quantile 0.3 0.3 0.4 0.6 0.7 0.4 0.5 0.6 0.7

CUMULATIVE EFFECT OF TOTAL MIXTURE

Increasing trend of **preterm birth** estimate across quantiles of maternal and couples' total preconception mixture concentrations

quantile

BKMR – Posterior Inclusion Probability (PIP)

Maternal preconception model: DEHP-BPA high PIP

Paternal preconception model: DEHP-BPA high PIP

Couple-based model: similar PIP for maternal and paternal groups

BKMR - SUMMARY

Maternal preconception **BPA** – associated with higher preterm birth risk, holding all other biomarker concentrations at their median

Paternal preconception **DEHP** metabolites – associated with higher preterm birth risk, holding all other biomarker concentrations at their median

Higher preterm birth across quantiles of **maternal** and **couples' total mixture** concentrations

BIRTHWEIGHT

RESULTS

PCA MODELS

Table 2. Change in Birthweight (g) for every unit increase in PCA Factor Score

PCA-derived factors	Adjusted Change in Birthweight (gram)		
	Maternal	Paternal	
DEHP-BPA factor	-1.99 (-55.51, 51.53)	-63.29 (-133.82, 7.24)	
Paraben factor	-18.60 (-72.58, 35.39)	16.21 (-51.57, 83.98)	
High molecular weight phthalate factor	16.95 (-37.31, 71.22)	-48.69 (-116.11, 18.73)	
Low molecular weight phthalate factor	-51.45 (-105.09, 2.18)	-72.92 (-141.39, -4.45)	

UNIVARIATE ASSOCIATIONS

MATERNAL EXPOSURE – BIRTHWEIGHT

This BKMR derived figure depicts the association between a given exposure concentration and birthweight, holding all other individual biomarkers at their median concentration

UNIVARIATE ASSOCIATIONS

This BKMR derived figure depicts the association between a given exposure concentration and

concentration and birthweight, holding all other individual biomarkers at their median concentration

PATERNAL EXPOSURE - BIRTHWEIGHT

CUMULATIVE EFFECT OF TOTAL MIXTURE

Decreasing trend of **birthweight** across quantiles of **maternal**, **paternal** and **couples**' total preconception mixture concentrations

BKMR- Posterior Inclusion Probability (PIP)

Maternal preconception model: DEHP-BPA high PIP

Paternal preconception model: DEHP-BPA and low molecular weight phthalate - high PIP

Couple-based model: higher PIP for **paternal mixture group** than maternal mixture group

SUMMARY

Maternal preconception **BPA** exposure associated with decreased birthweight, holding all other biomarker concentrations at their median

Paternal preconception **MBP** exposure associated with decreased birthweight, holding all other biomarker concentrations at their median

Lower **birthweight** across quantiles of **maternal**, **paternal** and **couples' total** mixture concentrations

06 CONCLUSIONS

NTERPRETATION AND IMPLICAITONS

М	IODELS	WINDOW	BIOMA	RKER/FACTOR	FINDING
	PCA	Maternal	D	EHP-BPA	Preterm birth
	PCA	Paternal	D	EHP-BPA	Preterm birth
	PCA	Paternal	I	Paraben	Preterm birth
	BKMR	Maternal		вра	Preterm birth
	BKMR	Maternal	To	tal Mixture	Preterm birth
	BKMR	Paternal		DEHP	Preterm birth
	BKMR	Couples	To	tal Mixture	Preterm birth

PRETERM BIRTH

HARVARD T.H. CHAN

SCHOOL OF PUBLIC HEALTH

PRETERM BIRTH RISK

CONCLUSIONS

Maternal : DEHP-BPA, BPA, and Total Mixture

Paternal: DEHP-BPA, Paraben, DEHP

Couples: Total Mixture

BIRTHWEIGHT

	MODELS	WINDOW	BIOMARKER/FACTOR	FINDING		
	PCR	Paternal	DEHP-BPA	Birthweight		
	PCR	Paternal	LMWP	Birthweight		
	BKMR	Maternal	BPA	Birthweight		
	BKMR	Paternal	MBP	Birthweight		
	BKMR	Maternal	Total Mixture	Birthweight		
	BKMR	Paternal	Total Mixture	Birthweight		
	BKMR	Couples	Total Mixture	Birthweight		
HARVARD T.H. CHAN						

SCHOOL OF PUBLIC HEALTH

BIRTHWEIGHT

CONCLUSIONS

Paternal : DEHP-BPA, LMWP, MBP, and Total Mixture

Maternal: BPA, and Total Mixture

Couples' Total Mixture

IMPLICATIONS

CONCLUSIONS

Fathers and Mothers phthalate and phenol mixtures contributed equally to preterm birth risk

Couples' total mixture associated with lower birthweight

Fathers' phthalate and phenol exposure reduces birthweight more than mothers'

Couples' preconception health is a modifiable exposure

Interventions at the couple level before pregnancy attempt may improve perinatal outcomes

ACKNOWLEDGEMENTS

Vicente Mustieles

Yang Sun

Yixin Wang

Stelios Vagios

Paige Williams

Preconception PFAS Exposure and Reproduction (PREPARE) Study R01ES031657 (PI: Messerlian)

NIEHS Program Officers

Antonia Calafat Centers for Disease Control and Prevention

Dr John Petrozza

Dr Irene Souter

Vincent Center for Reproductive Biology

Massachusetts General Hospital

THANK YOU

Carmen Messerlian, PhD cmesser@hsph.harvard.edu

Yu Zhang, PhD student yuzhang@hsph.harvard.edu

Scientific Early Life Environmental Health & Development Program

